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1. Introduction

Clear examples of the diitlculties associated with applying CFD techniques to ap-

parently simple problems are provided by computational aeroacoustics and compu-

tational electromagnetics. These applications require accurate wave propagation

over long distances for a wide range of frequencies, placing a severe demand on

numerical algorithms, and raising issues related to efficiency, accuracy, compatible

space and time treatments, high frequency data, propngatica along character-

istic surfaces, isotropy, stable and accurate artificial boundary treatments, and

nonrestrictive stability bounds. This paper briefly presents two methods for the

development of finite difference algorithms which are intended to address these

issues. High order single step explicit algorithms are possible, and examples with

up to eleventh order accuracy will be shown. High resolution algorithms in the

sense of [9] are also possible, with amplification factor and relative phase change

per time step which are virtually 1 for normal mode frequencies in [0, lr] and CFL

numbers in [0, 1]. If our most accurate algorithm is used to propagate an initial

periodic sine wave, then after five periods with four grid points per wavelength,

the maximum error is O[10-e], and after five hundred thousand periods with eight

grid points per wavelength, the maximum error is O[10-4]. High order algorithms

are relatively more efficient [7], and their relative efficiency tends to increase as

the error bound decreases, as the simulation time increases, and as the spatial

dimension increases. Our algorithms show several orders of magnitude difference

in the number of multiplications required to meet an error bound of O[10 -4] at

five periods of propagation. Applied computations require boundary conditions.

A new artifical boundary condition that has been developed by Hagstrom [5] will

be shown for the linearized Euler equations. This boundary condition is local in

time and does not require information about the distance or direction of either an

assumed source or an expanding wave front. The boundary and propagation al-

gorithms have a consistent derivation and similar properties [4]. Additional issues

are raised by shocks, but are not addressed here.

2. Algorithms for the Linearized Euler Equations in 1D

As a first example we will consider the linearized Euler equations in one space

dimension. The equations for the isentropic case can be written in nondimension-



alized form as the system

_ + ax + = O,
O)

+_r +_=o,

where Mr is the constant mean ccmvection Mach number, p is the disturbance

pressure, and u is the disturbance velocity. System (1) can be cliagonalized and

solved by the method of characteristics to produce the general solution

- (M + 1)t))

- (M - 1)t)),

-(M + 1)_))

.(_, t) (M + 1)t)+ #(_=2(ui(z -

+_(.i(_ - (M - s)t) - #(_

l_Z,t) 1
--_(p/(z - (M -4- 1)t) + ui(z

1 . (M 1)t) ui(z (M 1)t)),+_0_(_ .....

with intial data ui(z) = u(z,O), and ivi(z) = iv(z,O).

(2)

The first step in producing algorithms for solutions of (1) is to locally inter-

polate u and p at t. with order D polynomials in x:
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The expansion coefficients are obtained by the Method of Undetermined CoeflL

dents using the known data on a given stencil. Note that there is no specification

of a particular mesh or data type, and that separate derivative terms are not even

considered. The use of single interpolation polynomials of order D is equivalent

to simultaneously apprc0dmating derivatives up to the D t_ order, with

I _iva 10_iv
1 c3aua 10au and ivo = _. _ (4)

u° = a! Oz °. _ at Oz °' a! Oz ° a! Ox °"

The km.al inter/_/aticms(3) to u mad ivat time t. axe used as initialdata for the

exact solution (2), producing an approximate local solution

1

u(zi + z,t. +t)_(ua(z-(M + 1)t)+

+_(ua(x -(M- 1)t)-

1

p(zi + x,t. + t) _,_(pa(x - (M + 1)t) +

+_(pa(z - (M - 1)t)-

pa(z - (M + 1)t))

pa(z --(M" - 1)t)),

ua(z - (M + 1)t))

ua(z --(M - l)t)).

(5)
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The approximate local solution (5) is a function of z and t, and it is an exact

solution to (1) with the local interpolants (3) as initial data, so that (5) is an

exact local propagator for (1) and correctly incorporates the dynamics of (1). The

fundamental viewpoint of this method is to approximate the solution of the system

instead of particular terms in the govern_ equations. This fundamental idea is

seen in the use of Riemann solvers for problems with shocks [2], and in the use

of local Fourier decompositions and separation of variables to develop algorithms

for a wide variety of problems [1]. The approximate local solution (5) is used to

obtain a computational algorithm at the stencil center, with

u(zi,t, + k) _ u_+1= l(ua(-(M + 1)k)+ pa(-(M + 1)k))

.6 l(ua(-(M - 1)k)-pa(-(M - 1)k)),

p(z,, t,, .6k)_ p_+1__l(pa(_(M .61)k)+ ua(-(M-k1)k))

+ I(_(-(M - 1)k)- _(-(M - 1)k)).

(6)

Algorithm (6) uses the exact local propagator (5) with approximate local data (3),

so that the time evolution introduces no new error, but merely propagates what

has been introduced by the interpolation. Note that finite di_erence forms are

not speci_ed, and that (6) represents a family of algorithms dependant upon the

interpolant (3). If order D interpolant8 are used for a partimlar realization of (6),

then the algorithm will have accuracy of order D in both space and time. There

are several interpretations of algorithm (6). It may be viewed as an application of

the Method of Characteristics, since in this case, the general solution form for the

exact local propagator is obtaind by this method. If the interpolation expansion

coefficients are viewed as spatial derivatives (4), then the local solution in spac_

and time (5) can be viewed as a Cauchy-Kowaleskaya expansion. The algorithm

can also be reformulated as a truncated Taylor series expansion in the time step

size k, with

u_ +1 =u0 - k(z_ .6 Mul) .6 k2(2Mp2 .6 (M z Jr 1)u2)

- k_((1 .6 3MZ)pa "6 M(3 "6 M2)u3) "6 ...,

=_ - k(ul + MFI) + k2(2Mu2 + (M 2 + 1)/_)

- ks((1 + 3M2)u3 + M(3 + M2)I_) +...,

(7)

where the grid ratio _ = _ is implicit in (7), since the coefficients ua and p.,

include the factor h -° for space step size h. A truncated Taylor expansion in time

be viewedas a gener_t_edL_-Wendro_method {8].Algorithm(0) _ _so
be reformulated as a conventional finite difference method, since the underlying

spatial interpolations use local polynomials. Further details are in [3].
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We will introduce four relatively conventional realizations of algorithm (6),
with central stencils for the interpolauts (3), and with values for u and p at each

grid point. These al_thms have three, five, seven, and nine point central sten-

c/Is, they are second, fourth, sixth, and eighth order accurate in both space and

time, and they are refered to as the "c3o0ex," "cSo0ex," "c7o0ex," and "c9o0ex"

methods, respectively. These four algorithms are all aiagle step explicit methods
1 Grid r_- _,_-_twith dispersive truncation errors, and each is stable for _ _ 1+--'fir"

data for these algorithms is presented in Figure 1, co_ the order of accuracy

of each of the four methods. This grid refinement data is discussed in more detail

with data from an additional class of high resolution Hermitian methods that are

introduced below.

Stable high order boundary treatments can be derived if these algorithms are

viewed as Cauchy-Kowaleskaya expansions. The interpolant from the data on a

single stencil next to a boundary is used as initial data for the approximation
of the evolution of the solution over the interval from the stencil center to the

boundary point. Values for u and p are computed at each grid point that is not

on the boundary in this interval, and outgoing Riemann variables are computed

at the boundary point. The boundary treatment fee the cgo0ex method must be

modified for stability, and it uses a truncated eight point boundary stencil with

additional data at the boundary point. Table 1 presents results for a simulation

with inital data u(z,0) = 0 and p(z,0) = Sin(_rz), for -1 _< z _< 1, with _ = 0.8

and M - 0. For the boundary treatment, u+p is computed at the z = I boundary,

u-p is computed at the z = -1 boundary, and typical CFD boundary conditions

are imposed, with ,(--1,t) and p(1,t) given. The data in Table 1 shows that the

propagation algorithms and boundary treatments are stable with from second to

eighth order accuracy in both time and space. Further details are in [3].

TABLE 1: Data From Explicit Algorithms with Boundary Treatments

Maximum Error in u or p at t = 10

c3dOex c,SdOex c7dOex cgdOex_" nlo

8 50 1.871)-01 1.17D-02

16 100 4.57D-02 9.98D-04

32 200 1.32D-02 8.11D-05

64 400 3.50D-03 5.54D-06

128 800 8.94D-04 3.58D-07

256 1600 2.25D-04 2.27D-08

512 3200 5.66D-05 1.43D-09

1024 6400 1.42D-05 9.12D-11

1.01D-02 8.65D-05

5.26D-05 8.50D-07

8.79D-07 4.69D-09

1.29D-08 2.09D-II

1.89D-10 3.75D-13

3.35D-12 4.91D-13

1.89D-12

3. Hermltlan Algorithms

We will introduce a second family of algorithms for (1), which use the exact lo-

cal propagator (5), but which are distinguished from the relatively conventional
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algorithms introduced above by the use of Hermitian interpolants for (3). This
particular family of algorithms usesand computes values for u and p, and for

their spatial derivatives. Various orders of spatial derivative data are required

at each grid point, depending upon the particular algorithm. If these algorithms

are viewed as approximate local solutions for u and p, or as Cauchy-Kowaleskaya

expansions that are locally defined as functions of z and t, then they can be

differentiated in z to provide local solutions for the spatial derivatives that are

consistent with the solutions for u and p. The local derivative solutions obtained

by differentiating (5) in z are used to obtain computational forms for the spatial

derivatives that are analogous to and consistent with the computational forms (6)

for u and p. These forms may be expressed as Taylor series time expansions in k,

with

uz_ +1 =ul - 2k(p2 + Mu2) + 3k2(2Mps + (M 2 + 1)us)

- 4/ca((1 + 3M2)p, -I- M(3 + M2)u,)+...,
(8)

pz_ +I ----/h -- 2/¢(u2 -t- Mp2) -t- 3k2(2Mus -t- (M 2 + 1)ps)

- 4/cs((1 + 3M2)u4 + M(3 + M2)p4)+ ...,

and with similar forms for second and higher derivatives. The interpolation step

for the Hermitian algorithms only produces interpolants (3) for the functions u

and p, using local polynomial approximations and the Method of Undetermined

Coett;cients with all of the data at each grid point on a given stencil. Note that

there is no separate consideration given to interpolation or propagation for the
derivative data.

Hermitian algorithms with central stencils have stability problems if the max-

imum order of accuracy is obtained. Stable algorithms with exact propagators can

be obtained on alternating grids offset by a half mesh width. We will introduce

four algorithms which use staggered two point grids, and three algorithms which

use staggered four point grids. On staggered two point grids, if just u and p are

used, then a first order exact propagator algorithm is obtained, which we will de-

note by "c3o0s2." If up to first, second, or third derivatives are used in addition to

u and p, then stable algorithms are obtained which are third, fifth, or seventh order

accurate in space and time, referred to as the "c3ols2," "c3o2s2," and "c3o3s2"

methods, respectively. On staggered four point grids, if just u and p are used,

then a third order exact propagator algorithm is obtained, which we will denote

by "c5o0s2." If up to first or second derivatives are used in addition to u and p,

then stable algorithms are obtained that are seventh or eleventh order accurate in

space and time, referred to as the "c5ols2," and "c5o2s2" methods, respectively.

These seven algorithms are all single step explicit methods on staggered grids with

_ive truncation errors, and each is stable for _ <: 1 where the staggered

half step size is _. Note that two half time steps can be composed to produce

single step algorithms with time step size k. The fall time step algorithms result-

ing from staggered two point grids can be formulated as single step methods on a
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ceutral three point stencil, and the algorithms from staggered four point gri& as

single step methods on a central seven point stencil. Other combinations are pos-

sible, such as composing the c3o_2 and cSols2 methods, to produce a single step

explicit seventh order Hermitian method on a single central five point stencil. It

will be shown below that some of these Hermitian algorithms have extraordinary

resolution and accuracy.

4. Numerical Experiments with the 1D Algorithms

Numerical experiments will be conducted with the eleven algorithms that have

been introduced above, by computing solutions to (1) with inital data u(z, O) - 0

and p(z, 0) = Sin(_z) for -1 _< z _< 1, and with A = 0.8 and M - 0. Periodic

boundaries will be imposed, with p(-1, t) - p(1,t) and u(-1,t) - u(1, t) for 0 __ t.

Note that the initial data has wavelength and period 2. Figure 1 shows the 1o910

of the maximum absolute error at t - 10 in u or p versus the logs of the number

of grid points per wavelength. This data corroborates the order of accuracy of

each d the methods. Note that the first order c3o0s2 method is incapable of

producing accurate results with any reasonable resolution, and that the second

order c3o0ex or Lax-Wen&off method requires 64 grid points per wavelength to

produce O[10 -2] accuracy after five periods. Note also that the cTo0ex and cgo0ex

central methods show a greater sensitivity to roundoff errors than the high order

Hermitian methods. An interesting feature of Figure 1 is the data at the coarsest

resolution, with 4 grid points per wavelength. At this resolution, the simulations

with the c3o2s2, c3o3s2, c5ols2 and c5o2s2 algorithms have errors that range from

O[10 -2] to O[10-s], in contrast with errors that range from O[1] to O[10 -1] for

the other algorithms. An O[10 -6] error after five periods of propagation with

four grid points per wavelength is exceptionally high resolution. Notice also the

relative errors from methods which are of similar order. The c5o0s2 and c3ols2

algorithms are both third order, but the c3ols2 algorithm produces lower errors

by about one order of magnitude at each grid resolution. The c5ols2 and c3o3s2

algorithms are both seventh order, but the c3o3s2 algorithm produces lower errors

by about two orders of magnitude at each grid resolution. The conventional sixth

order c7o0ex and eighth order c9o0ex methods have larger errors at each grid

level than the fifth order c3o2s2 and seventh order c5ols2 Hermitian methods,

respectively. In these comparisons of algorithms with similar orders of accuracy,

the algorithm which produces lower errors has higher resolution f_xn using more

derivative information at each grid point. The accuracy of a numerical algorithm

is determined by both its order of accuracy and its resolving power.

The periodic problem which produces Figure 1 is also used for propagation

with 8 grid points per wavelength out to t = 10, t - 1,000, and t - 100,000.

The data is presented in Table 2, where O[1] errors are marked by asterisks, and

where the algorithms are r_.nked by order. Note in Table 2 for t - 10, that the

error data from the sixth order cTo0ex method is two orders of magnitude higher
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than from the fifth order c3o2s2 method, and that the error from the eighth

order cgo0ex method is two orders of magnitude higher than from the seventh

order c5ols2 method, and four orders of magnitude higher than from the seventh

order c3o3s2 method. A similar comparison is also seen in Table 2 for the data

from t - 1,000 and t -- 100, 000. These comparisons once again show that both

the order of accuracy and the resolution of a numerical algorithm determine its

accuracy. Note that the only algorithms which produce errors that are not O[1]

at t ---- 100,000 are the high order and high resolution c5ols2, c3o3s2 and c5o2s2

methods. These results also show that far-field may be redefined by several orders

of magnitude, and that efficient propagation to a truly far field requires methods

which are both high order and high resolution.

TABLE 2: Long Time Simulations For Each Algorithm

Maximum Error in u or p at Various Times

Method Order t = 10 t = 1,000 t - 100,000

c300ex 2 6.76D-01 ******** ********

cSo0s2 3 2.42D-01 ******** ********

c3ols2 3 3.97D-02 ******** ********

c5o0ex 4 9.14D-02 6.74D-01 ********

c3o2s2 5 2.27D-04 2.26D-02 ********

c7o0ex 6 1.11D-02 1.04D-01 ********

c5ols2 7 4.52D-05 4.55D-03 3.75D-01

c3o3s2 7 6.74D-07 6.78D-05 6.75D-03

cgo0ex 8 1.39D-03 1.38D-02 ********

c5o2s2 11 9.33D-10 9.37D-08 9.37D-06

The superior accuracy of the high order and high resolution methods is ob-

tained by using more complex algorithms, with more variables and equations, and

with more operations per grid point per time step. It is natural to ask wether

or not the simpler, more conventional algorithms are more or less efficient than

the Hermitian algorithms. We will address this issue by replotting the data from

Figure 1, this time with the log10 of the maximum error at t - 10 on the vertical

axis, and the log10 of the total number of multiplications required for the entire

simulation out to t - 10 on the horizontal axis. This data is presented in Figure

2. It has been shown in [7] that relative computational eiBciency increases with

order of accuracy, and that the relative efficiencyincrea-qeas the error tolerance is

lowered, and as the simulation time is increased. The data in Figure 2 from our

methods clearly shows that for every level of error the efficiency in meeting that

error tolerance increases with the order of accuracy of the algorithm, in spite of

the fact that algorithms of radically different type are being used. In particular,

the Hermitian algorithms not only use more degrees of freedom of data in order to
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in_ order of accuracy, but they also solve more equations for more variables,

and yet they are still more dBdent than the leas accurate algorithms.

5. Normal Mode Analysis in ID

The special properties of the full discretization Hermitian algorithms can be shown

by a normal mode analysis. We will consider Hermitian algorithms applied to the

linear first order wave equation

M_
_-+ a= =0. (9)

The local exact propagator is defined by the Method of Characteristics. A normal

mode for C0) can be written in local coordinates as

-(=,0 = _F_[ ie(= -_Mt)], (10)

with amplitude a, frequency 8 E [0, It], and with space mesh size h. The symbol

p for the algorithm can be written in terms of the normal mode (I0), with

Un-I.-I

_,e)_ .., (11)

where u "+z is obtained from the algorithm with the normal mode u n us the known

solution at in, and where ,_ -- _ is the CFL number. Spatial derivative data

is needed by the Hermitiau algorithms at each grid point, and since the normal

mode (10) is perfectly known as a function of z at in, we will simply take and
use its derivative values for this data. This heuristic procedure is intended to

obtain qualitative insights about the algorithms, and is not intended as a rigourous

stability analysis, which would treat the total system of u and its spatial derivatives

with independant error modes expected in each. From (I I) we obtain the norm

llp(._,O)ll= (._[.,,]=+ z,,,Lo]2)_, (12)

and the phase change per time step

,,_,_,O)=¢o_-Zr .re'L°] ].
' ll_,X,0)ll

(13)

Note that we have varied from [10] by using a definitien of phase change in terms

of Cos -z rather than Tan -z . For the phase speed properties of an algorithm, we

will use the normalized relative phase change per time step

,_(_,0)= _¢o_-'r e.Lo] ],' II,o(.X,0)11
(14)
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rather than the phase change per time step (13).

All of the Hermitian methods with two point sta_ered _i& were applied to

the wave equation (9), and single step forms of the algorithms were obtained on

three point central stencils. The norm of the ampli_cation factor (12) and the

relative phase change per time step (14) of these single step algorithm forms have

been obtained numerically from an analytical expression. The most accurate of

these four methods is the seventh order high resolution c3o3s2 algorithm, which

uses u and its first throu_ third spatial derivative at every grid point. The norm

of the ampli_cation factor (12) for the _2 algorithm is plotted in Figure 3(a)

as a function of the wave number 0 e [0, _r] and the CFL number A • [0, 1]. Note

that Figure 3(a) shows the norm of the amplification factor as less than or equal

to 1 in the specified parameter range. The most dissipated behaviour is in the

limit at 0 = _r, and the norm of the amplification factor at 0 -- _" is plotted as

a function of A in Figure 3(b). Fi_L-e 3(b) shows the norm of the amplification

factor varying between approximately 0.9988 and 1 at $ - _r. The relative phase

change per time step (14) for the c3o3s2 algorithm is plotted hi Figure 4(a), also

as a function of the wave number 0 • [0, _r] and the CFL number A • [0,1]. The

most dispersed behaviour is in the limit at 0 - lr, and the relative phase change at

$ - = is plotted as a function of A hi Figure 4(b). Figure 4(b) shows the relative

phase change per time step varying between apprommately 0.9997 and 1.0002 at

0 = lr. The ampli_cation factor and relative phase change per time step plots in

Figures 3 and 4 are extraordinary, and show truly "spectral like" qualities for the

c3o3s2 algorithm. Recall from the numerical experiments reported above, that the

c5o2s2 algorithm is of even higher resolution than the c,rk_s2 algorithm.

6. Linearized Euler Equations in 2D

The algorithms that have been developed in one space dimension have all used

the Method of Characteristics to obtain an exact solution form that propagates a

local spatial inerpolant. The Method of Characteristics cannot be used in multiple

space dimensions for nondiagonalizable hyperbolic systems. We will consider the

llneafiz_ Euler equations in two space dimensions in order to indicate an approach

for developing exact local propagators in multiple space dimensions. Consider the

linearized Euler equations for the nondimensionalized isentropic case,

=0,

ap+

+v

(15)

where (U, V) is the constant mean convection velocity in Mach number, p is the
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pressuredisturbance, and (u, v) is the velocity disturbance. This two dimensional

system is nondiagonalizable, with w_ve propagation along characte_tic surfaces.

We will briefly describe the development of a second order explicit algorithm

for (15) on a symmetric 3 x 3 stencil. A second order local interpolant to u in z

and y at in can be written as

u(z, + x, y_ + v, t.) _ ua(x, y) =u0,0 + ul,0x + u2,0z 2

+(u0,1 + Ul,lZ + u2,1z2)p (16)

+(uo_ + ul,2z + u2,2z2_ 2,

with similar interpolants for v and p. The expansion coetilcients are simultaneously

obtained by the Method of Undetermined CoetHcients, and can be interpreted as

spatial derivatives, with

1 i_+Pua 1 aa+lsu

Uo,p= _!p!0z°0_ ' _ _!_!oz°o_P (x''v_'t")" (17)

Notice that there are up to fourth order cross derivative terms in the interpolant

(16). Exact polynomial solution forms for the linearized Euler equations (15) can

be derived by substituting the expansion forms

u(x_+ x, yi + y,t. + t) _ ua(., y,t) =

_(_, + .,yj + y,_. + t) _ _a(x,v,t) =

p(xi + x, y_ + y, t,, + t) _ pa(x, y, t) =

4_'_ uo,p,.tz°yP t "1,

o,p=0

_-_ _ Vo,p,_z°yPt _, (18)
o,_=0 *t=0

o,p=0 "trio

into system (15), and obtaining all the terms with V _ 0 by reqttiring system (15)

to be satisfied for all z, y and t. Coefficients with V _ 0 are equivalent to time

derivatives, and the resulting polynomial solutions are expressed entirely in terms

of the spatial expansion coetilcients. Note that there will be third and fourth or-

der time terms present in the exact propagator solution forms. This procedure

for obtaining an exact solution form is equivalent to the Cauchy-Kowaleskaya pro-

cedure [6]. The exact polynomial solution forms from (18) give exact propagator

algorithms with correct multidimensional wave dynamics for the local spatial inter-

polants (16) as initial data. Since a biquadratic interpolant is used, the resulting

algorithm will have O[h 2 + k 2] truncation error, and it is dispersive. This pro-

cedure has been used with other symmetric stencils and interpolants to produce

algorithms with fourth and sixth order accuracy in both space and time (see [3] for
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details). Becausea local exact propagator is used to develop these algorithms, the

correct propagation of information along characteristic surfaces is automatically

incorporated in the local apprca£mation of the solution, so that this approach can

be said to generalize the Method of Characteristics to nondiagonaUzable systems

in multiple space dimensions.
We have implemented new boundary conditions developed by Hagstrom [5]

as algorithms that are compatible with our propagation methods for the linearized

Euler equations in two space dimensions. Hagstrom actually provides a sequence

of local approximations on the artifical boundary that are defined by a variable

number of auxiliary functions. Ear.h of the approximate problems are strongly well

posed, and the appro0dmate solutions converge exponentially to the exact solution

on the open domain as the number of auxiliary functions incre.as_ [5]. As an

example of these boundary conditions, consider the case of a subsonic mean flow

in the positive z direction, with normal Riemann variables r = u+p and ! = u-p.

The function r is outgoing at an artifical boundary on the right, and is viewed

as being defined on the interior and the surface, while the function I is incoming

and is viewed as being defined only on the surface. The boundary surface values

of r and v are obtained essentially in the same way as the outgoing Riemann

variables in the one dimensional case considered above, with the algorithm forms

being interpreted as Cauchy-Kowaleskaya expansions in space and time, and all

relevant solution values obtained over a common boundary stencil The function

I is obtained with attxiliary functions/j and gj, from the system

Ol al o% '_

N +vN- uN = 0,
j=l

m

2

(19)

1-v2 sin2(--L_ Note that sys-where ai - 14T-L--U2-U2cos(2-'_f+1)+ V, and ]3j- _m+1 2,-+x,"

tern(19) isforced by the interiorsolutionpropagating acrossthe artificalboundary

inthe form of the -_ term in the equation forI,and the _ terms in the equations

for the auxiliaryfunctions. Note also that thisboundary system does not require

assumptions about solution form or source location. In practice, we have used

thiscondition with disturbance data entirelycontained within the computational

domain, and with boundary data initializedas 0. Similar systems are defined on

the lefthand artiScalboundary (see [4],[5]for details).Boundary condition (19)

and itslefthand analog have been implemented in both second and fourth order

algorithms, and numerical experiments with m = 2 auxiliary functions have shown

no visible evidence of reflection (see [4] for details).

11



7. Conclusions

Sizzle step methods with high order accuracy in both space and time are shown

and compared. A particular class of methods using Hermitian interpolation on

alternating grids has shown both high order accuracy and spectral like high res-

olution. The high order and high resolution methods are more efficient than the

less accurate methods by orders of magnitude, even though the hi_ order and

high resolution methods are considerably more complex. Calculation to the "far

field" can be redefined as propagation to more than O[I0 s] w_velengths or periods.

Both high order accuracy and high resolution methods are required to compute to

a true far field, with an example algorithm producing 0[i0 -4] errors after 5 × lO s

periods of propagation with eight grid points per w_velenKth. Algorithms for the

linearized Euler equations in 2D are discussed, with propagation along characteris-

tic surfaces, which generalizes the Method of Characteristics to nondiagonalizable

Hyperbolic systems. Unobtrusive artificial boundary conditions are indicated.
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Figure 1: Maximum Error by the Number of Grid Points per Wavelength.
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c 3o3s2 Algorithm Amplification Factor
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F'_ure 3(a): Amplification Factor for the _ Algorithm.

c3o3s2 Algorithm Amplification Factor at theto = Pi
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Figure 3(b): Amplification Psctor st # = lr for the c3o3s2 Algorithm.

14



c3o3s2 Algorithm Relative Phase Change per Time Step

F'u_re 4(a): R_tive Phase _ r_r the c_o_2 Alga'thin.

c 3o3s2 Algorithm Relative Phase Change at theta = Pi
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Figure 4(b): Relative Phase Change st 0 = w for the _ Algorithm.
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